Spectra of the extended neighborhood corona and extended corona of two graphs
نویسندگان
چکیده
In this paper we define extended corona and extended neighborhood corona of two graphs G1 and G2, which are denoted by G1 • G2 and G1 ∗ G2 respectively. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum. As applications, we give methods to construct infinite families of integral graphs, Laplacian integral graphs and expander graphs from known ones.
منابع مشابه
Spectra of some new extended corona
For two graphs $mathrm{G}$ and $mathrm{H}$ with $n$ and $m$ vertices, the corona $mathrm{G}circmathrm{H}$ of $mathrm{G}$ and $mathrm{H}$ is the graph obtained by taking one copy of $mathrm{G}$ and $n$ copies of $mathrm{H}$ and then joining the $i^{th}$ vertex of $mathrm{G}$ to every vertex in the $i^{th}$ copy of $mathrm{H}$. The neighborhood corona $mathrm{G}starmathrm{H}$ of $mathrm{G}$ and $...
متن کاملSpectra of Some New Graph Operations and Some New Class of Integral Graphs
In this paper, we define duplication corona, duplication neighborhood corona and duplication edge corona of two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian. As an application, our results enable us to construct infinitely many pairs of cospectral graphs and also integral graphs.
متن کاملOn the saturation number of graphs
Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...
متن کاملSpectra of Graph Operations Based on Corona and Neighborhood Corona of Graph G and K1
The corona G◦H of two graphs G and H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining each i-th vertex of G to every vertex in the i-th copy of H. The neighborhood coronaG⋆H of two graphs G and H is the graph obtained by taking one copy of G and |V (G)| copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. In this p...
متن کاملOn the super domination number of graphs
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EJGTA
دوره 4 شماره
صفحات -
تاریخ انتشار 2016